A systems-based assessment of the PrePex device adverse events active surveillance system in Zimbabwe
Paul C Adamson,
Taurayi A Tafuma,
Stephanie M Davis,
Sinokuthemba Xaba and
Amy Herman-Roloff
PLOS ONE, 2017, vol. 12, issue 12, 1-12
Abstract:
Background: Voluntary Medical Male Circumcision (VMMC) is an effective method for HIV prevention and the World Health Organization (WHO) has recommended its expansion in 14 African countries with a high prevalence of HIV and low prevalence of male circumcision. The WHO has recently pre-qualified the PrePex device, a non-surgical male circumcision device, which reduces procedure time, can increase acceptability of VMMC, and can expand the set of potential provider cadres. The PrePex device was introduced in Zimbabwe as a way to scale-up VMMC services in the country. With the rapid scale-up of the PrePex device, as well as other similar devices, a strong surveillance system to detect adverse events (AE) is needed to monitor the safety profile of these devices. We performed a systems-based evaluation of the PrePex device AE active surveillance system in Zimbabwe. Methods: The evaluation was based on the Centers for Disease Control and Prevention’s Updated Guidelines for Evaluating Public Health Surveillance Systems. We adapted these guidelines to fit our local context. The evaluation incorporated the review of the standard operating procedures and surveillance system documents. Additionally, structured, in-person interviews were performed with key stakeholders who were users of the surveillance system at various levels. These key stakeholders were from the Ministry of Health, implementing partners, and health facilities in Harare. Results: Clients were requested to return to the facility for follow-up on days 7, 14 and 49 after placement of the device. In the event of a severe AE, a standard report was generated by the health facility and relayed to the Ministry of Health Child and Care and donor agencies through predefined channels within 24 hours of diagnosis. Clinic staff reported difficulties with the amount of documentation required to follow up with clients and to report AEs. The surveillance system’s acceptability among users interviewed was high, and users were motivated to identify all possible AEs related to this device. The surveillance system was purely paper-based and both duplicate and discrepant reporting forms between sites were identified. Conclusion: The PrePex AE active surveillance system was well accepted among participants in the health system. However, the amount of documentation which was required to follow-up with patients was a major barrier within the system, and might lead to decreased timeliness and quality of reporting. A passive surveillance system supported by electronic reporting would improve acceptance of the program.
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0190055 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 90055&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0190055
DOI: 10.1371/journal.pone.0190055
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().