EconPapers    
Economics at your fingertips  
 

Modeling the spread of the Zika virus using topological data analysis

Derek Lo and Briton Park

PLOS ONE, 2018, vol. 13, issue 2, 1-7

Abstract: Zika virus (ZIKV), a disease spread primarily through the Aedes aegypti mosquito, was identified in Brazil in 2015 and was declared a global health emergency by the World Health Organization (WHO). Epidemiologists often use common state-level attributes such as population density and temperature to determine the spread of disease. By applying techniques from topological data analysis, we believe that epidemiologists will be able to better predict how ZIKV will spread. We use the Vietoris-Rips filtration on high-density mosquito locations in Brazil to create simplicial complexes, from which we extract homology group generators. Previously epidemiologists have not relied on topological data analysis to model disease spread. Evaluating our model on ZIKV case data in the states of Brazil demonstrates the value of these techniques for the improved assessment of vector-borne diseases.

Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0192120 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 92120&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0192120

DOI: 10.1371/journal.pone.0192120

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0192120