EconPapers    
Economics at your fingertips  
 

Computational modelling of pathogenic protein spread in neurodegenerative diseases

Konstantinos Georgiadis, Selina Wray, Sébastien Ourselin, Jason D Warren and Marc Modat

PLOS ONE, 2018, vol. 13, issue 2, 1-15

Abstract: Pathogenic protein accumulation and spread are fundamental principles of neurodegenerative diseases and ultimately account for the atrophy patterns that distinguish these diseases clinically. However, the biological mechanisms that link pathogenic proteins to specific neural network damage patterns have not been defined. We developed computational models for mechanisms of pathogenic protein accumulation, spread and toxic effects in an artificial neural network of cortical columns. By varying simulation parameters we assessed the effects of modelled mechanisms on network breakdown patterns. Our findings suggest that patterns of network breakdown and the convergence of patterns follow rules determined by particular protein parameters. These rules can account for empirical data on pathogenic protein spread in neural networks. This work provides a basis for understanding the effects of pathogenic proteins on neural circuits and predicting progression of neurodegeneration.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0192518 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 92518&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0192518

DOI: 10.1371/journal.pone.0192518

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-29
Handle: RePEc:plo:pone00:0192518