Statistical patterns of human mobility in emerging Bicycle Sharing Systems
Xiangyu Chang,
Jingzhou Shen,
Xiaoling Lu and
Shuai Huang
PLOS ONE, 2018, vol. 13, issue 3, 1-16
Abstract:
The emerging Bicycle Sharing System (BSS) provides a new social microscope that allows us to “photograph” the main aspects of the society and to create a comprehensive picture of human mobility behavior in this new medium. BSS has been deployed in many major cities around the world as a short-distance trip supplement for public transportations and private vehicles. A unique value of the bike flow data generated by these BSSs is to understand the human mobility in a short-distance trip. This understanding of the population on short-distance trip is lacking, limiting our capacity in management and operation of BSSs. Many existing operations research and management methods for BSS impose assumptions that emphasize statistical simplicity and homogeneity. Therefore, a deep understanding of the statistical patterns embedded in the bike flow data is an urgent and overriding issue to inform decision-makings for a variety of problems including traffic prediction, station placement, bike reallocation, and anomaly detection. In this paper, we aim to conduct a comprehensive analysis of the bike flow data using two large datasets collected in Chicago and Hangzhou over months. Our analysis reveals intrinsic structures of the bike flow data and regularities in both spatial and temporal scales such as a community structure and a taxonomy of the eigen-bike-flows.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0193795 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 93795&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0193795
DOI: 10.1371/journal.pone.0193795
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().