EconPapers    
Economics at your fingertips  
 

Training at maximal power in resisted sprinting: Optimal load determination methodology and pilot results in team sport athletes

Matt R Cross, Johan Lahti, Scott R Brown, Mehdi Chedati, Pedro Jimenez-Reyes, Pierre Samozino, Ola Eriksrud and Jean-Benoit Morin

PLOS ONE, 2018, vol. 13, issue 4, 1-16

Abstract: Aims: In the current study we investigated the effects of resisted sprint training on sprinting performance and underlying mechanical parameters (force-velocity-power profile) based on two different training protocols: (i) loads that represented maximum power output (Lopt) and a 50% decrease in maximum unresisted sprinting velocity and (ii) lighter loads that represented a 10% decrease in maximum unresisted sprinting velocity, as drawn from previous research (L10). Methods: Soccer [n = 15 male] and rugby [n = 21; 9 male and 12 female] club-level athletes were individually assessed for horizontal force-velocity and load-velocity profiles using a battery of resisted sprints, sled or robotic resistance respectively. Athletes then performed a 12-session resisted (10 × 20-m; and pre- post-profiling) sprint training intervention following the L10 or Lopt protocol. Results: Both L10 and Lopt training protocols had minor effects on sprinting performance (average of -1.4 to -2.3% split-times respectively), and provided trivial, small and unclear changes in mechanical sprinting parameters. Unexpectedly, Lopt impacted velocity dominant variables to a greater degree than L10 (trivial benefit in maximum velocity; small increase in slope of the force-velocity relationship), while L10 improved force and power dominant metrics (trivial benefit in maximal power; small benefit in maximal effectiveness of ground force orientation). Conclusions: Both resisted-sprint training protocols were likely to improve performance after a short training intervention in already sprint trained athletes. However, widely varied individualised results indicated that adaptations may be dependent on pre-training force-velocity characteristics.

Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0195477 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 95477&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0195477

DOI: 10.1371/journal.pone.0195477

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0195477