EconPapers    
Economics at your fingertips  
 

Using Bayesian dynamical systems, model averaging and neural networks to determine interactions between socio-economic indicators

Björn R H Blomqvist, Richard P Mann and David J T Sumpter

PLOS ONE, 2018, vol. 13, issue 5, 1-23

Abstract: Social and economic systems produce complex and nonlinear relationships in the indicator variables that describe them. We present a Bayesian methodology to analyze the dynamical relationships between indicator variables by identifying the nonlinear functions that best describe their interactions. We search for the ‘best’ explicit functions by fitting data using Bayesian linear regression on a vast number of models and then comparing their Bayes factors. The model with the highest Bayes factor, having the best trade-off between explanatory power and interpretability, is chosen as the ‘best’ model. To be able to compare a vast number of models, we use conjugate priors, resulting in fast computation times. We check the robustness of our approach by comparison with more prediction oriented approaches such as model averaging and neural networks. Our modelling approach is illustrated using the classical example of how democracy and economic growth relate to each other. We find that the best dynamical model for democracy suggests that long term democratic increase is only possible if the economic situation gets better. No robust model explaining economic development using these two variables was found.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0196355 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 96355&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0196355

DOI: 10.1371/journal.pone.0196355

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0196355