EconPapers    
Economics at your fingertips  
 

An efficient approach for feature construction of high-dimensional microarray data by random projections

Hassan Tariq, Elf Eldridge and Ian Welch

PLOS ONE, 2018, vol. 13, issue 4, 1-8

Abstract: Dimensionality reduction of microarray data is a very challenging task due to high computational time and the large amount of memory required to train and test a model. Genetic programming (GP) is a stochastic approach to solving a problem. For high dimensional datasets, GP does not perform as well as other machine learning algorithms. To explore the inherent property of GP to generalize models from low dimensional data, we need to consider dimensionality reduction approaches. Random projections (RPs) have gained attention for reducing the dimensionality of data with reduced computational cost, compared to other dimensionality reduction approaches. We report that the features constructed from RPs perform extremely well when combined with a GP approach. We used eight datasets out of which seven have not been reported as being used in any machine learning research before. We have also compared our results by using the same full and constructed features for decision trees, random forest, naive Bayes, support vector machines and k-nearest neighbor methods.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0196385 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 96385&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0196385

DOI: 10.1371/journal.pone.0196385

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0196385