Beyond degree and betweenness centrality: Alternative topological measures to predict viral targets
Prajwal Devkota,
Matt C Danzi and
Stefan Wuchty
PLOS ONE, 2018, vol. 13, issue 5, 1-14
Abstract:
The availability of large-scale screens of host-virus interaction interfaces enabled the topological analysis of viral protein targets of the host. In particular, host proteins that bind viral proteins are generally hubs and proteins with high betweenness centrality. Recently, other topological measures were introduced that a virus may tap to infect a host cell. Utilizing experimentally determined sets of human protein targets from Herpes, Hepatitis, HIV and Influenza, we pooled molecular interactions between proteins from different pathway databases. Apart from a protein’s degree and betweenness centrality, we considered a protein’s pathway participation, ability to topologically control a network and protein PageRank index. In particular, we found that proteins with increasing values of such measures tend to accumulate viral targets and distinguish viral targets from non-targets. Furthermore, all such topological measures strongly correlate with the occurrence of a given protein in different pathways. Building a random forest classifier that is based on such topological measures, we found that protein PageRank index had the highest impact on the classification of viral (non-)targets while proteins' ability to topologically control an interaction network played the least important role.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0197595 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 97595&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0197595
DOI: 10.1371/journal.pone.0197595
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone (plosone@plos.org).