Analyzing dwell times with the Generalized Method of Moments
Sadie Piatt and
Allen C Price
PLOS ONE, 2019, vol. 14, issue 1, 1-20
Abstract:
The Generalized Method of Moments (GMM) is a statistical method for the analysis of samples from random processes. First developed for the analysis of econometric data, the method is here formulated to extract hidden kinetic parameters from measurements of single molecule dwell times. Our method is based on the analysis of cumulants of the measured dwell times. We develop a general form of an objective function whose minimization can return estimates of decay parameters for any number of intermediates directly from the data. We test the performance of our technique using both simulated and experimental data. We also compare the performance of our method to nonlinear least-squares minimization (NL-LSQM), a commonly-used technique for analysis of single molecule dwell times. Our findings indicate that the GMM performs comparably to NL-LSQM over most of the parameter range we explore. It offers some benefits compared with NL-LSQM in that it does not require binning, exhibits slightly lower bias and variance with small sample sizes (N
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0197726 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 97726&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0197726
DOI: 10.1371/journal.pone.0197726
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().