EconPapers    
Economics at your fingertips  
 

Predictive modeling for odor character of a chemical using machine learning combined with natural language processing

Yuji Nozaki and Takamichi Nakamoto

PLOS ONE, 2018, vol. 13, issue 6, 1-13

Abstract: Recent studies on machine learning technology have reported successful performances in some visual and auditory recognition tasks, while little has been reported in the field of olfaction. In this paper we report computational methods to predict the odor impression of a chemical from its physicochemical properties. Our predictive model utilizes nonlinear dimensionality reduction on mass spectra data and performs the clustering of descriptors by natural language processing. Sensory evaluation is widely used to measure human impressions to smell or taste by using verbal descriptors, such as “spicy” and “sweet”. However, as it requires significant amounts of time and human resources, a large-scale sensory evaluation test is difficult to perform. Our model successfully predicts a group of descriptors for a target chemical through a series of computer simulations. Although the training text data used in the language modeling is not specialized for olfaction, the experimental results show that our method is useful for analyzing sensory datasets. This is the first report to combine machine olfaction with natural language processing for odor character prediction.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0198475 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 98475&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0198475

DOI: 10.1371/journal.pone.0198475

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0198475