Quantum theory of mass potentials
Dmitriy Melkonian,
Terry Blumenthal and
Edward Barin
PLOS ONE, 2018, vol. 13, issue 7, 1-37
Abstract:
Probabilistic formalism of quantum mechanics is used to quantitatively link the global scale mass potential with the underlying electrical activity of excitable cells. Previous approaches implemented methods of classical physics to reconstruct the mass potential in terms of explicit physical models of participating cells and the volume conductor. However, the multiplicity of cellular processes with extremely intricate mixtures of deterministic and random factors prevents the creation of consistent biophysical parameter sets. To avoid the uncertainty inherent in physical attributes of cell ensembles, we undertake here a radical departure from deterministic equations of classical physics, instead applying the probabilistic reasoning of quantum mechanics. Crucial steps include: (1) the relocation of the elementary bioelectric sources from a cellular to a molecular level; (2) the creation of microscale particle models in terms of a non-homogenous birth-and-death process. To link the microscale processes with macroscale potentials, time-frequency analysis was applied for estimation of the empirical characteristic functions for component waveforms of electroencephalogram (EEG), eye-blink electromyogram (EMG), and electrocardiogram (ECG). We describe universal models for the amplitude spectra and phase functions of functional components of mass potentials. The corresponding time domain relationships disclose the dynamics of mass potential components as limit distribution functions produced by specific microscale transients. The probabilistic laws governing the microscale machinery, founded on an empirical basis, are presented. Computer simulations of particle populations with time dependent transition probabilities reveal that hidden deterministic chaos underlies development of the components of mass potentials. We label this kind of behaviour “transient deterministic chaos”.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0198929 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 98929&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0198929
DOI: 10.1371/journal.pone.0198929
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().