An Eigenspace approach for detecting multiple space-time disease clusters: Application to measles hotspots detection in Khyber-Pakhtunkhwa, Pakistan
Sami Ullah,
Hanita Daud,
Sarat C Dass,
Hadi Fanaee-T and
Alamgir Khalil
PLOS ONE, 2018, vol. 13, issue 6, 1-13
Abstract:
Identifying the abnormally high-risk regions in a spatiotemporal space that contains an unexpected disease count is helpful to conduct surveillance and implement control strategies. The EigenSpot algorithm has been recently proposed for detecting space-time disease clusters of arbitrary shapes with no restriction on the distribution and quality of the data, and has shown some promising advantages over the state-of-the-art methods. However, the main problem with the EigenSpot method is that it cannot be adapted to detect more than one spatiotemporal hotspot. This is an important limitation, since, in reality, we may have multiple hotspots, sometimes at the same level of importance. We propose an extension of the EigenSpot algorithm, called Multi-EigenSpot that is able to handle multiple hotspots by iteratively removing previously detected hotspots and re-running the algorithm until no more hotspots are found. In addition, a visualization tool (heatmap) has been linked to the proposed algorithm to visualize multiple clusters with different colors. We evaluated the proposed method using the monthly data on measles cases in Khyber-Pakhtunkhwa, Pakistan (Jan 2016- Dec 2016), and the efficiency was compared with the state-of-the-art methods: EigenSpot and Space-time scan statistic (SaTScan). The results showed the effectiveness of the proposed method for detecting multiple clusters in a spatiotemporal space.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0199176 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 99176&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0199176
DOI: 10.1371/journal.pone.0199176
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().