EconPapers    
Economics at your fingertips  
 

Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning

Mizuho Nishio, Osamu Sugiyama, Masahiro Yakami, Syoko Ueno, Takeshi Kubo, Tomohiro Kuroda and Kaori Togashi

PLOS ONE, 2018, vol. 13, issue 7, 1-12

Abstract: We developed a computer-aided diagnosis (CADx) method for classification between benign nodule, primary lung cancer, and metastatic lung cancer and evaluated the following: (i) the usefulness of the deep convolutional neural network (DCNN) for CADx of the ternary classification, compared with a conventional method (hand-crafted imaging feature plus machine learning), (ii) the effectiveness of transfer learning, and (iii) the effect of image size as the DCNN input. Among 1240 patients of previously-built database, computed tomography images and clinical information of 1236 patients were included. For the conventional method, CADx was performed by using rotation-invariant uniform-pattern local binary pattern on three orthogonal planes with a support vector machine. For the DCNN method, CADx was evaluated using the VGG-16 convolutional neural network with and without transfer learning, and hyperparameter optimization of the DCNN method was performed by random search. The best averaged validation accuracies of CADx were 55.9%, 68.0%, and 62.4% for the conventional method, the DCNN method with transfer learning, and the DCNN method without transfer learning, respectively. For image size of 56, 112, and 224, the best averaged validation accuracy for the DCNN with transfer learning were 60.7%, 64.7%, and 68.0%, respectively. DCNN was better than the conventional method for CADx, and the accuracy of DCNN improved when using transfer learning. Also, we found that larger image sizes as inputs to DCNN improved the accuracy of lung nodule classification.

Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200721 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 00721&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0200721

DOI: 10.1371/journal.pone.0200721

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0200721