Landscape and flux for quantifying global stability and dynamics of game theory
Li Xu and
Jin Wang
PLOS ONE, 2018, vol. 13, issue 8, 1-27
Abstract:
Game theory has been widely applied to many research areas including economics, biology and social sciences. However, it is still challenging to quantify the global stability and global dynamics of the game theory. We developed a landscape and flux framework to quantify the global stability and global dynamics of the game theory. As an example, we investigated a model of three-strategy game: a special replicator mutator game termed as the repeated Prison Dilemma model. In this model, one stable state, two stable states and limit cycle can emerge under different parameters. The repeated Prisoner’s Dilemma system has Hopf bifurcation from one stable state to limit cycle state, and then to another one stable state or two stable states, and vice versa. We quantified the global stability of the repeated Prisoner’s Dilemma system and identified optimal kinetic paths between the basins of attractor. The optimal paths are irreversible due to the non-zero flux. We also quantified the interplay between Peace and War.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201130 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 01130&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0201130
DOI: 10.1371/journal.pone.0201130
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().