Mathematical modeling of disease dynamics in SDHB- and SDHD-related paraganglioma: Further step in understanding hereditary tumor differences and future therapeutic strategies
Dominique Barbolosi,
Joakim Crona,
Raphaël Serre,
Karel Pacak and
David Taieb
PLOS ONE, 2018, vol. 13, issue 8, 1-12
Abstract:
Succinate dehydrogenase subunit B and D (SDHB and SDHD) mutations represent the most frequent cause of hereditary pheochromocytoma and paraganglioma (PPGL). Although truncation of the succinate dehydrogenase complex is thought to be the disease causing mechanism in both disorders, SDHB and SDHD patients exihibit different phenotypes. These phenotypic differences are currently unexplained by molecular genetics. The aim of this study is to compare disease dynamics in these two conditions via a Markov chain model based on 4 clinically-defined steady states. Our model corroborates at the population level phenotypic observations in SDHB and SDHD carriers and suggests potential explanations associated with the probabilities of disease maintenance and regression. In SDHB-related syndrome, PPGL maintenance seems to be reduced compared to SDHD (p = 0.04 vs 0.95) due to higher probability of tumor cell regression in SDHB vs SDHD (p = 0.87 vs 0.00). However, when SDHB-tumors give rise to metastases, metastatic cells are able to thrive with decreased probability of regression compared with SDHD counterparts (p = 0.17 vs 0.89). By constrast, almost all SDHD patients develop PGL (mainly head and neck) that persist throughout their lifetime. However, compared to SDHB, maintenance of metastatic lesions seems to be less effective for SDHD (p = 0.83 vs 0.11). These findings align with data suggesting that SDHD-related PPGL require less genetic events for tumor initiation and maintenance compared to those related to SDHB, but fail to initiate biology that promotes metastatic spread and metastatic cell survival in host tissues. By contrast, the higher number of genetic abnormalities required for tumor initiation and maintenance in SDHB PPGL result in a lower penetrance of PGL, but when cells give rise to metastases they are assumed to be better adapted to sustain survival. These proposed differences in disease progression dynamics between SDHB and SDHD diseases provide new cues for future exploration of SDHx PPGL behavior, offering considerations for future specific therapeutic and prevention strategies.
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201303 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 01303&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0201303
DOI: 10.1371/journal.pone.0201303
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone (plosone@plos.org).