Confidence in uncertainty: Error cost and commitment in early speech hypotheses
Sebastian Loth,
Katharina Jettka,
Manuel Giuliani,
Stefan Kopp and
Jan P de Ruiter
PLOS ONE, 2018, vol. 13, issue 8, 1-30
Abstract:
Interactions with artificial agents often lack immediacy because agents respond slower than their users expect. Automatic speech recognisers introduce this delay by analysing a user’s utterance only after it has been completed. Early, uncertain hypotheses of incremental speech recognisers can enable artificial agents to respond more timely. However, these hypotheses may change significantly with each update. Therefore, an already initiated action may turn into an error and invoke error cost. We investigated whether humans would use uncertain hypotheses for planning ahead and/or initiating their response. We designed a Ghost-in-the-Machine study in a bar scenario. A human participant controlled a bartending robot and perceived the scene only through its recognisers. The results showed that participants used uncertain hypotheses for selecting the best matching action. This is comparable to computing the utility of dialogue moves. Participants evaluated the available evidence and the error cost of their actions prior to initiating them. If the error cost was low, the participants initiated their response with only suggestive evidence. Otherwise, they waited for additional, more confident hypotheses if they still had time to do so. If there was time pressure but only little evidence, participants grounded their understanding with echo questions. These findings contribute to a psychologically plausible policy for human-robot interaction that enables artificial agents to respond more timely and socially appropriately under uncertainty.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201516 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 01516&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0201516
DOI: 10.1371/journal.pone.0201516
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().