EconPapers    
Economics at your fingertips  
 

Feasibility of non-linear beamforming ultrasound methods to characterize and size kidney stones

Ryan S Hsi, Siegfried G Schlunk, Jaime E Tierney, Kazuyuki Dei, Rebecca Jones, Mark George, Pranav Karve, Ravindra Duddu and Brett C Byram

PLOS ONE, 2018, vol. 13, issue 8, 1-14

Abstract: Purpose: Ultrasound methods for kidney stone imaging suffer from poor sensitivity and size overestimation. The study objective was to demonstrate feasibility of non-linear ultrasound beamforming methods for stone imaging, including plane wave synthetic focusing (PWSF), short-lag spatial coherence (SLSC) imaging, mid-lag spatial coherence (MLSC) imaging with incoherent compounding, and aperture domain model image reconstruction (ADMIRE). Materials and methods: The ultrasound techniques were evaluated in an in vitro kidney stone model and in a pilot study of 5 human stone formers (n = 6 stones). Stone contrast, contrast-to-noise ratio (CNR), sizing, posterior shadow contrast, and shadow width sizing were compared among the different techniques and to B-mode. CT imaging within 60 days was considered the gold standard stone size. Paired t-tests using Bonferroni correction were performed to evaluate comparing each technique with B-mode. Results: Mean CT measured stone size was 6.0mm (range 2.9–12.2mm) with mean skin-to-stone distance 10.2cm (range 5.4–16.3cm). Compared to B-mode, stone contrast was best with ADMIRE (mean +12.2dB), while SLSC and MLSC showed statistically improved CNR. Sizing was best with ADMIRE (mean +1.3mm error), however this was not significantly improved over B-mode (+2.4mm). PWSF performed similarly to B-mode for stone contrast, CNR, SNR, and stone sizing. In the in vitro model, the shadow contrast was highest with ADMIRE (mean 10.5 dB vs 3.1 dB with B-mode). Shadow sizing was best with SLSC (mean error +0.9mm ± 2.9), however the difference compared to B-mode was not significant. Conclusions: The detection and sizing of stones are feasible with advanced beamforming methods with ultrasound. ADMIRE, SLSC, and MLSC hold promise for improving stone detection, shadow contrast, and sizing.

Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0203138 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 03138&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0203138

DOI: 10.1371/journal.pone.0203138

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0203138