EconPapers    
Economics at your fingertips  
 

CFSH: Factorizing sequential and historical purchase data for basket recommendation

Pengfei Wang, Jiansheng Chen and Shaozhang Niu

PLOS ONE, 2018, vol. 13, issue 10, 1-16

Abstract: To predict what products customers will buy in next transaction is an important task. Existing work in next-basket prediction can be summarized into two paradigms. One is the item-centric paradigm, where sequential patterns are mined from customers’ transactional data and leveraged for prediction. However, these approaches usually suffer from the data sparseness problem. The other is the user-centric paradigm, where collaborative filtering techniques have been applied on customers’ historical data. However, these methods ignore the sequential behaviors of customers which is often crucial for next-basket prediction. In this paper, we introduce a hybrid method, namely the Co-Factorization model over Sequential and Historical purchase data (CFSH for short) for next-basket recommendation. Compared with existing methods, our approach conveys the following merits: 1) By mining global sequential patterns, we can avoid the sparseness problem in traditional item-centric methods; 2) By factorizing product-product and customer-product matrices simultaneously, we can fully exploit both sequential and historical behaviors to learn customer and product representations better; 3) By using a hybrid recommendation method, we can achieve better performance in next-basket prediction. Experimental results on three real-world purchase datasets demonstrated the effectiveness of our approach as compared with the state-of-the-art methods.

Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0203191 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 03191&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0203191

DOI: 10.1371/journal.pone.0203191

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0203191