SNP variable selection by generalized graph domination
Shuzhen Sun,
Zhuqi Miao,
Blaise Ratcliffe,
Polly Campbell,
Bret Pasch,
Yousry A El-Kassaby,
Balabhaskar Balasundaram and
Charles Chen
PLOS ONE, 2019, vol. 14, issue 1, 1-18
Abstract:
Background: High-throughput sequencing technology has revolutionized both medical and biological research by generating exceedingly large numbers of genetic variants. The resulting datasets share a number of common characteristics that might lead to poor generalization capacity. Concerns include noise accumulated due to the large number of predictors, sparse information regarding the p≫n problem, and overfitting and model mis-identification resulting from spurious collinearity. Additionally, complex correlation patterns are present among variables. As a consequence, reliable variable selection techniques play a pivotal role in predictive analysis, generalization capability, and robustness in clustering, as well as interpretability of the derived models. Methods and findings: K-dominating set, a parameterized graph-theoretic generalization model, was used to model SNP (single nucleotide polymorphism) data as a similarity network and searched for representative SNP variables. In particular, each SNP was represented as a vertex in the graph, (dis)similarity measures such as correlation coefficients or pairwise linkage disequilibrium were estimated to describe the relationship between each pair of SNPs; a pair of vertices are adjacent, i.e. joined by an edge, if the pairwise similarity measure exceeds a user-specified threshold. A minimum k-dominating set in the SNP graph was then made as the smallest subset such that every SNP that is excluded from the subset has at least k neighbors in the selected ones. The strength of k-dominating set selection in identifying independent variables, and in culling representative variables that are highly correlated with others, was demonstrated by a simulated dataset. The advantages of k-dominating set variable selection were also illustrated in two applications: pedigree reconstruction using SNP profiles of 1,372 Douglas-fir trees, and species delineation for 226 grasshopper mouse samples. A C++ source code that implements SNP-SELECT and uses Gurobi optimization solver for the k-dominating set variable selection is available (https://github.com/transgenomicsosu/SNP-SELECT).
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0203242 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 03242&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0203242
DOI: 10.1371/journal.pone.0203242
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().