EconPapers    
Economics at your fingertips  
 

Development and validation of an ensemble classifier for real-time recognition of cow behavior patterns from accelerometer data and location data

Jun Wang, Zhitao He, Guoqiang Zheng, Song Gao and Kaixuan Zhao

PLOS ONE, 2018, vol. 13, issue 9, 1-19

Abstract: Behaviors are important indicators for assessing the health and well-being of dairy cows. The aim of this study is to develop and validate an ensemble classifier for automatically measuring and distinguishing several behavior patterns of dairy cows from accelerometer data and location data. The ensemble classifier consists of two parts, our new Multi-BP-AdaBoost algorithm and a data fusion method based on D-S evidence theory. We identify seven behavior patterns: feeding, lying, standing, lying down, standing up, normal walking, and active walking. Accuracy, sensitivity, and precision were used to validate classification performance. The Multi-BP-AdaBoost algorithm performed well when identifying lying (92% accuracy, 93% sensitivity, 82% precision), lying down (99%, 82%, 86%), standing up (99%, 74%, 85%), normal walking (97%, 92%, 86%), and active walking (99%, 94%, 89%). Its results were poor for feeding (80%, 52%, 55%) and standing (80%, 46%, 58%), which are difficult to differentiate using a leg-mounted sensor. Position data made it possible to differentiate feeding and standing. The D-S evidence fusion method for combining accelerometer data and location data in classification was used to fuse two pieces of basic behavior-related evidence into a single estimation model. With this addition, the sensitivity and precision of the two difficult behaviors increased by approximately 20 percentage points. In conclusion, the classification results indicate that the ensemble classifier effectively recognizes various behavior patterns in dairy cows. However, further work is needed to study the robustness of the feature and model by increasing the number of cows enrolled in the trial.

Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0203546 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 03546&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0203546

DOI: 10.1371/journal.pone.0203546

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone (plosone@plos.org).

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0203546