Role of simple descriptors and applicability domain in predicting change in protein thermostability
Kenneth N McGuinness,
Weilan Pan,
Robert P Sheridan,
Grant Murphy and
Alejandro Crespo
PLOS ONE, 2018, vol. 13, issue 9, 1-25
Abstract:
The melting temperature (Tm) of a protein is the temperature at which half of the protein population is in a folded state. Therefore, Tm is a measure of the thermostability of a protein. Increasing the Tm of a protein is a critical goal in biotechnology and biomedicine. However, predicting the change in melting temperature (dTm) due to mutations at a single residue is difficult because it depends on an intricate balance of forces. Existing methods for predicting dTm have had similar levels of success using generally complex models. We find that training a machine learning model with a simple set of easy to calculate physicochemical descriptors describing the local environment of the mutation performed as well as more complicated machine learning models and is 2–6 orders of magnitude faster. Importantly, unlike in most previous publications, we perform a blind prospective test on our simple model by designing 96 variants of a protein not in the training set. Results from retrospective and prospective predictions reveal the limited applicability domain of each model. This study highlights the current deficiencies in the available dTm dataset and is a call to the community to systematically design a larger and more diverse experimental dataset of mutants to prospectively predict dTm with greater certainty.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0203819 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 03819&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0203819
DOI: 10.1371/journal.pone.0203819
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().