EconPapers    
Economics at your fingertips  
 

Functional estimation of bony segment lengths using magneto-inertial sensing: Application to the humerus

Michele Crabolu, Danilo Pani, Luigi Raffo, Maurizio Conti and Andrea Cereatti

PLOS ONE, 2018, vol. 13, issue 9, 1-11

Abstract: Inertial sensor technology has assumed an increasingly important role in the field of human motion analysis. However, the reliability of the kinematic estimates could still be critical for specific applications in the field of functional evaluation and motor rehabilitation. Within this context, the definition of subject-specific multi-body kinematic models is crucial since it affects the accuracy and repeatability of movement reconstruction. A key step for kinematic model calibration is the determination of bony segment lengths. This study proposes a functional approach for the in vivo estimation of the humerus length using a single magneto-inertial measurement unit (MIMU) positioned on the right distal posterior forearm. The humerus length was estimated as the distance between the shoulder elevation axis and the elbow flexion–extension axis. The calibration exercise involved five shoulder elevations in the sagittal plane with the elbow completely extended and five elbow flexion–extensions with the upper arm rigidly aligned to the trunk. Validation of the method was conducted on five healthy subjects using the humerus length computed from magnetic resonance imaging as the gold standard. The method showed mean absolute errors of 12 ± 9 mm, which were in the estimate of the humerus length. When using magneto-inertial technology, the proposed functional method represents a promising alternative to the regressive methods or manual measurements for performing kinematic model calibrations. Although the proposed methodology was validated for the estimation of the humerus length, the same approach can be potentially extended to other body segments.

Date: 2018
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0203861 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 03861&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0203861

DOI: 10.1371/journal.pone.0203861

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0203861