Fundamental patterns and predictions of event size distributions in modern wars and terrorist campaigns
Michael Spagat,
Neil F Johnson and
Stijn van Weezel
PLOS ONE, 2018, vol. 13, issue 10, 1-13
Abstract:
It is still unknown whether there is some deep structure to modern wars and terrorist campaigns that could, for example, enable reliable prediction of future patterns of violent events. Recent war research focuses on size distributions of violent events, with size defined by the number of people killed in each event. Event size distributions within previously available datasets, for both armed conflicts and for global terrorism as a whole, exhibit extraordinary regularities that transcend specifics of time and place. These distributions have been well modelled by a narrow range of power laws that are, in turn, supported by some theories of violent group dynamics. We show that the predicted event-size patterns emerge broadly in a mass of new event data covering all conflicts in the world from 1989 to 2016. Moreover, there are similar regularities in the events generated by individual terrorist organizations, 1998—2016. The existence of such robust empirical patterns hints at the predictability of size distributions of violent events in future wars. We pursue this prospect using split-sample techniques that help us to make useful out-of-sample predictions. Power-law-based prediction systems outperform lognormal-based systems. We conclude that there is indeed evidence from the existing data that fundamental patterns do exist, and that these can allow prediction of size distribution of events in modern wars and terrorist campaigns.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204639 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 04639&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0204639
DOI: 10.1371/journal.pone.0204639
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().