EconPapers    
Economics at your fingertips  
 

A human body physiological feature selection algorithm based on filtering and improved clustering

Bo Chen, Jie Yu, Xiu-e Gao and Qing-Guo Zheng

PLOS ONE, 2018, vol. 13, issue 10, 1-15

Abstract: Research: The body composition model is closely related to the physiological characteristics of the human body. At the same time there can be a large number of physiological characteristics, many of which may be redundant or irrelevant. In existing human physiological feature selection algorithms, it is difficult to overcome the impact that redundancy and irrelevancy may have on human body composition modeling. This suggests a role for selection algorithms, where human physiological characteristics are identified using a combination of filtering and improved clustering. To do this, a feature filtering method based on Hilbert-Schmidt dependency criteria is first of all used to eliminate irrelevant features. After this, it is possible to use improved Chameleon clustering to increase the combination of sub-clusters amongst the characteristics, thereby removing any redundant features to obtain a candidate feature set for human body composition modeling. Method Result: The proposed algorithm is able to remove irrelevant and redundant features and the resulting correlation between the model and the body composition (BFM which is a whole body fat evaluation can better assess the body's overall fat and muscle composition.) is 0.978, thereby providing an improved model for prediction with a relative error of less than 0.12.

Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204816 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 04816&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0204816

DOI: 10.1371/journal.pone.0204816

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0204816