EconPapers    
Economics at your fingertips  
 

Urban crime prediction based on spatio-temporal Bayesian model

Tao Hu, Xinyan Zhu, Lian Duan and Wei Guo

PLOS ONE, 2018, vol. 13, issue 10, 1-18

Abstract: Spatio-temporal Bayesian modeling, a method based on regional statistics, is widely used in epidemiological studies. Using Bayesian theory, this study builds a spatio-temporal Bayesian model specific to urban crime to analyze its spatio-temporal patterns and determine any developing trends. The associated covariates and their changes are also analyzed. The model is then used to analyze data regarding burglaries that occurred in Wuhan City in China from January to August 2013. Of the diverse socio-economic variables associated with crime rate, including population, the number of local internet bars, hotels, shopping centers, unemployment rate, and residential zones, this study finds that the burglary crime rate is significantly correlated with the average resident population per community and number of local internet bars. This finding provides a scientific reference for urban safety protection.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0206215 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 06215&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0206215

DOI: 10.1371/journal.pone.0206215

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0206215