EconPapers    
Economics at your fingertips  
 

Detection of bitterness and astringency of green tea with different taste by electronic nose and tongue

Guangyu Zou, Yanzhong Xiao, Miaosen Wang and Hongmei Zhang

PLOS ONE, 2018, vol. 13, issue 12, 1-10

Abstract: An electronic nose was used to evaluate the bitterness and astringency of green tea, and the possible application of the sensor was assessed for the evaluation of different tasting green tea samples. Three different grades of green tea were measured with the electronic nose and electronic tongue. The sensor array of the E-nose was optimized by correlation analysis. The relationship between the signal of the optimized sensor array and the bitterness and astringency of green tea was developed using multiple linear regression (MLR), partial least squares regression (PLSR), and back propagation neural network (BPNN). BPNN is a multilayer feedforward neural network trained by an error propagation algorithm. The results showed that the BPNN model possessed good ability to predict the bitterness and astringency of green tea, with high correlation coefficients (R = 0.98 for bitterness and R = 0.96 for astringency) and relatively lower root mean square errors (RMSE) (0.25 for bitterness and 0.32 for astringency) for the calibration set. The R value is 0.92 and 0.87, and the RMSE is 0.34 and 0.55, for bitterness and astringency, respectively, of the prediction set. These results indicate that the electronic nose could be used as a feasible and reliable method to evaluate the taste of green tea. These results can provide a theoretical reference for rapid detection of the bitter and astringent taste of green tea using volatile odor information.

Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0206517 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 06517&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0206517

DOI: 10.1371/journal.pone.0206517

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone (plosone@plos.org).

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0206517