EconPapers    
Economics at your fingertips  
 

Data representations and -analyses of binary diary data in pursuit of stratifying children based on common childhood illnesses

Johan de Rooi, Sarah K Nørgaard, Morten A Rasmussen, Klaus Bønnelykke, Hans Bisgaard and Age K Smilde

PLOS ONE, 2018, vol. 13, issue 11, 1-15

Abstract: In this article we analyse diary reports concerning childhood symptoms of illness, these data are part of a larger study with other types of measurements on childhood asthma. The children are followed for three years and the diaries are updated, by the parents, on a daily basis. Here we focus on the methodological implications of analysing such data. We investigate two ways of representing the data and explore which tools are applicable given both representations. The first representation relies on proper alignment and point by point comparison of the signals. The second approach takes into account combinations of symptoms on a day by day basis and boils down to the analysis of counts. In the present case both methods are well applicable. However, more generally, when symptom episodes are occurring more at random locations in time, a point by point comparison becomes less applicable and shape based approaches will fail to come up with satisfactory results. In such cases, pattern based methods will be of much greater use. The pattern based representation focuses on reoccurring patterns and ignores ordering in time. With this representation we stratify the data on the level of years, so that possibly yearly differences can still be detected.

Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0207177 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 07177&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0207177

DOI: 10.1371/journal.pone.0207177

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0207177