A Bayesian approach for analysis of ordered categorical responses subject to misclassification
Ashley Ling,
El Hamidi Hay,
Samuel E Aggrey and
Romdhane Rekaya
PLOS ONE, 2018, vol. 13, issue 12, 1-17
Abstract:
Ordinal categorical responses are frequently collected in survey studies, human medicine, and animal and plant improvement programs, just to mention a few. Errors in this type of data are neither rare nor easy to detect. These errors tend to bias the inference, reduce the statistical power and ultimately the efficiency of the decision-making process. Contrarily to the binary situation where misclassification occurs between two response classes, noise in ordinal categorical data is more complex due to the increased number of categories, diversity and asymmetry of errors. Although several approaches have been presented for dealing with misclassification in binary data, only limited practical methods have been proposed to analyze noisy categorical responses. A latent variable model implemented within a Bayesian framework was proposed to analyze ordinal categorical data subject to misclassification using simulated and real datasets. The simulated scenario consisted of a discrete response with three categories and a symmetric error rate of 5% between any two classes. The real data consisted of calving ease records of beef cows. Using real and simulated data, ignoring misclassification resulted in substantial bias in the estimation of genetic parameters and reduction of the accuracy of predicted breeding values. Using our proposed approach, a significant reduction in bias and increase in accuracy ranging from 11% to 17% was observed. Furthermore, most of the misclassified observations (in the simulated data) were identified with a substantially higher probability. Similar results were observed for a scenario with asymmetric misclassification. While the extension to traits with more categories between adjacent classes is straightforward, it could be computationally costly. For traits with high heritability, the performance of the methodology would be expected to improve.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0208433 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 08433&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0208433
DOI: 10.1371/journal.pone.0208433
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone (plosone@plos.org).