Word sense disambiguation using hybrid swarm intelligence approach
Wafaa AL-Saiagh,
Sabrina Tiun,
Ahmed AL-Saffar,
Suryanti Awang and
A S Al-khaleefa
PLOS ONE, 2018, vol. 13, issue 12, 1-19
Abstract:
Word sense disambiguation (WSD) is the process of identifying an appropriate sense for an ambiguous word. With the complexity of human languages in which a single word could yield different meanings, WSD has been utilized by several domains of interests such as search engines and machine translations. The literature shows a vast number of techniques used for the process of WSD. Recently, researchers have focused on the use of meta-heuristic approaches to identify the best solutions that reflect the best sense. However, the application of meta-heuristic approaches remains limited and thus requires the efficient exploration and exploitation of the problem space. Hence, the current study aims to propose a hybrid meta-heuristic method that consists of particle swarm optimization (PSO) and simulated annealing to find the global best meaning of a given text. Different semantic measures have been utilized in this model as objective functions for the proposed hybrid PSO. These measures consist of JCN and extended Lesk methods, which are combined effectively in this work. The proposed method is tested using a three-benchmark dataset (SemCor 3.0, SensEval-2, and SensEval-3). Results show that the proposed method has superior performance in comparison with state-of-the-art approaches.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0208695 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 08695&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0208695
DOI: 10.1371/journal.pone.0208695
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().