Hypercomplex extreme learning machine with its application in multispectral palmprint recognition
Longbin Lu,
Xinman Zhang and
Xuebin Xu
PLOS ONE, 2019, vol. 14, issue 4, 1-18
Abstract:
An extreme learning machine (ELM) is a novel training method for single-hidden layer feedforward neural networks (SLFNs) in which the hidden nodes are randomly assigned and fixed without iterative tuning. ELMs have earned widespread global interest due to their fast learning speed, satisfactory generalization ability and ease of implementation. In this paper, we extend this theory to hypercomplex space and attempt to simultaneously consider multisource information using a hypercomplex representation. To illustrate the performance of the proposed hypercomplex extreme learning machine (HELM), we have applied this scheme to the task of multispectral palmprint recognition. Images from different spectral bands are utilized to construct the hypercomplex space. Extensive experiments conducted on the PolyU and CASIA multispectral databases demonstrate that the HELM scheme can achieve competitive results. The source code together with datasets involved in this paper can be available for free download at https://figshare.com/s/01aef7d48840afab9d6d.
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209083 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 09083&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0209083
DOI: 10.1371/journal.pone.0209083
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().