Statistical inferences for polarity identification in natural language
Nicolas Pröllochs,
Stefan Feuerriegel and
Dirk Neumann
PLOS ONE, 2018, vol. 13, issue 12, 1-21
Abstract:
Information forms the basis for all human behavior, including the ubiquitous decision-making that people constantly perform in their every day lives. It is thus the mission of researchers to understand how humans process information to reach decisions. In order to facilitate this task, this work proposes LASSO regularization as a statistical tool to extract decisive words from textual content in order to study the reception of granular expressions in natural language. This differs from the usual use of the LASSO as a predictive model and, instead, yields highly interpretable statistical inferences between the occurrences of words and an outcome variable. Accordingly, the method suggests direct implications for the social sciences: it serves as a statistical procedure for generating domain-specific dictionaries as opposed to frequently employed heuristics. In addition, researchers can now identify text segments and word choices that are statistically decisive to authors or readers and, based on this knowledge, test hypotheses from behavioral research.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209323 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 09323&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0209323
DOI: 10.1371/journal.pone.0209323
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().