EconPapers    
Economics at your fingertips  
 

A fast threshold segmentation method for froth image base on the pixel distribution characteristic

Dong-heng Xie, Ming Lu, Yong-fang Xie, Duan Liu and Xiong Li

PLOS ONE, 2019, vol. 14, issue 1, 1-18

Abstract: With the increase of the camera resolution, the number of pixels contained in froth image is increased, which brings many challenges to image segmentation. Froth size and distribution are the important index in froth flotation. The segmentation of froth images is always a problem in building flotation model. In segmenting froth images, Otsu method is usually used to get a binary image for classification of froth images, this method can get a satisfactory segmentation result. However, each gray level is required to calculate each of the between-class variance, it takes a longer time in froth images with a large number of pixels. To solve this problem, an improved method is proposed in this paper. Most froth images have the pixel distribution characteristic that the gray histogram curve is a sawtooth shape. The proposed method uses polynomial to fit the curve of gray histogram and takes the characteristic of gray histogram's valley into consideration in Otsu method. Two performance comparison methods are introduced and used. Experimental comparison between Otsu method and the proposed method shows that the proposed method has a satisfactory image segmentation with a low computing time.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0210411 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 10411&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0210411

DOI: 10.1371/journal.pone.0210411

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0210411