EconPapers    
Economics at your fingertips  
 

Sensitivity analysis of agent-based simulation utilizing massively parallel computation and interactive data visualization

Atsushi Niida, Takanori Hasegawa and Satoru Miyano

PLOS ONE, 2019, vol. 14, issue 3, 1-10

Abstract: An essential step in the analysis of agent-based simulation is sensitivity analysis, which namely examines the dependency of parameter values on simulation results. Although a number of approaches have been proposed for sensitivity analysis, they still have limitations in exhaustivity and interpretability. In this study, we propose a novel methodology for sensitivity analysis of agent-based simulation, MASSIVE (Massively parallel Agent-based Simulations and Subsequent Interactive Visualization-based Exploration). MASSIVE takes a unique paradigm, which is completely different from those of sensitivity analysis methods developed so far, By combining massively parallel computation and interactive data visualization, MASSIVE enables us to inspect a broad parameter space intuitively. We demonstrated the utility of MASSIVE by its application to cancer evolution simulation, which successfully identified conditions that generate heterogeneous tumors. We believe that our approach would be a de facto standard for sensitivity analysis of agent-based simulation in an era of evergrowing computational technology. All the results form our MASSIVE analysis are available at https://www.hgc.jp/~niiyan/massive.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0210678 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 10678&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0210678

DOI: 10.1371/journal.pone.0210678

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0210678