EconPapers    
Economics at your fingertips  
 

Sensitivity analysis for reproducible candidate values of model parameters in signaling hub model

Kentaro Inoue

PLOS ONE, 2019, vol. 14, issue 2, 1-13

Abstract: Mathematical models for signaling pathways are helpful for understanding molecular mechanism in the pathways and predicting dynamic behavior of the signal activity. To analyze the robustness of such models, local sensitivity analysis has been implemented. However, such analysis primarily focuses on only a certain parameter set, even though diverse parameter sets that can recapitulate experiments may exist. In this study, we performed sensitivity analysis that investigates the features in a system considering the reproducible and multiple candidate values of the model parameters to experiments. The results showed that although different reproducible model parameter values have absolute differences with respect to sensitivity strengths, specific trends of some relative sensitivity strengths exist between reactions regardless of parameter values. It is suggested that (i) network structure considerably influences the relative sensitivity strength and (ii) one might be able to predict relative sensitivity strengths specified in the parameter sets employing only one of the reproducible parameter sets.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0211654 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 11654&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0211654

DOI: 10.1371/journal.pone.0211654

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone (plosone@plos.org).

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0211654