Predicting diabetes second-line therapy initiation in the Australian population via time span-guided neural attention network
Samuele Fiorini,
Farshid Hajati,
Annalisa Barla and
Federico Girosi
PLOS ONE, 2019, vol. 14, issue 10, 1-17
Abstract:
Introduction: The first line of treatment for people with Diabetes mellitus is metformin. However, over the course of the disease metformin may fail to achieve appropriate glycemic control, and a second-line therapy may become necessary. In this paper we introduce Tangle, a time span-guided neural attention model that can accurately and timely predict the upcoming need for a second-line diabetes therapy from administrative data in the Australian adult population. The method is suitable for designing automatic therapy review recommendations for patients and their providers without the need to collect clinical measures. Data: We analyzed seven years of de-identified records (2008-2014) of the 10% publicly available linked sample of Medicare Benefits Schedule (MBS) and Pharmaceutical Benefits Scheme (PBS) electronic databases of Australia. Methods: By design, Tangle inherits the representational power of pre-trained word embedding, such as GloVe, to encode sequences of claims with the related MBS codes. Moreover, the proposed attention mechanism natively exploits the information hidden in the time span between two successive claims (measured in number of days). We compared the proposed method against state-of-the-art sequence classification methods. Results: Tangle outperforms state-of-the-art recurrent neural networks, including attention-based models. In particular, when the proposed time span-guided attention strategy is coupled with pre-trained embedding methods, the model performance reaches an Area Under the ROC Curve of 90%, an improvement of almost 10 percentage points over an attentionless recurrent architecture. Implementation: Tangle is implemented in Python using Keras and it is hosted on GitHub at https://github.com/samuelefiorini/tangle.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0211844 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 11844&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0211844
DOI: 10.1371/journal.pone.0211844
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().