Support vector machine with quantile hyper-spheres for pattern classification
Maoxiang Chu,
Xiaoping Liu,
Rongfen Gong and
Jie Zhao
PLOS ONE, 2019, vol. 14, issue 2, 1-29
Abstract:
This paper formulates a support vector machine with quantile hyper-spheres (QHSVM) for pattern classification. The idea of QHSVM is to build two quantile hyper-spheres with the same center for positive or negative training samples. Every quantile hyper-sphere is constructed by using pinball loss instead of hinge loss, which makes the new classification model be insensitive to noise, especially the feature noise around the decision boundary. Moreover, the robustness and generalization of QHSVM are strengthened through maximizing the margin between two quantile hyper-spheres, maximizing the inner-class clustering of samples and optimizing the independent quadratic programming for a target class. Besides that, this paper proposes a novel local center-based density estimation method. Based on it, ρ-QHSVM with surrounding and clustering samples is given. Under the premise of high accuracy, the execution speed of ρ-QHSVM can be adjusted. The experimental results in artificial, benchmark and strip steel surface defects datasets show that the QHSVM model has distinct advantages in accuracy and the ρ-QHSVM model is fit for large-scale datasets.
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0212361 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 12361&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0212361
DOI: 10.1371/journal.pone.0212361
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().