EconPapers    
Economics at your fingertips  
 

Development of an intelligent decision support system for ischemic stroke risk assessment in a population-based electronic health record database

Chen-Ying Hung, Ching-Heng Lin, Tsuo-Hung Lan, Giia-Sheun Peng and Chi-Chun Lee

PLOS ONE, 2019, vol. 14, issue 3, 1-16

Abstract: Background: Intelligent decision support systems (IDSS) have been applied to tasks of disease management. Deep neural networks (DNNs) are artificial intelligent techniques to achieve high modeling power. The application of DNNs to large-scale data for estimating stroke risk needs to be assessed and validated. This study aims to apply a DNN for deriving a stroke predictive model using a big electronic health record database. Methods and results: The Taiwan National Health Insurance Research Database was used to conduct a retrospective population-based study. The database was divided into one development dataset for model training (~70% of total patients for training and ~10% for parameter tuning) and two testing datasets (each ~10%). A total of 11,192,916 claim records from 840,487 patients were used. The primary outcome was defined as any ischemic stroke in inpatient records within 3 years after study enrollment. The DNN was evaluated using the area under the receiver operating characteristic curve (AUC or c-statistic). The development dataset included 672,214 patients (a total of 8,952,000 records) of whom 2,060 patients had stroke events. The mean age of the population was 35.5±20.2 years, with 48.5% men. The model achieved AUC values of 0.920 (95% confidence interval [CI], 0.908–0.932) in testing dataset 1 and 0.925 (95% CI, 0.914–0.937) in testing dataset 2. Under a high sensitivity operating point, the sensitivity and specificity were 92.5% and 79.8% for testing dataset 1; 91.8% and 79.9% for testing dataset 2. Under a high specificity operating point, the sensitivity and specificity were 80.3% and 87.5% for testing dataset 1; 83.7% and 87.5% for testing dataset 2. The DNN model maintained high predictability 5 years after being developed. The model achieved similar performance to other clinical risk assessment scores. Conclusions: Using a DNN algorithm on this large electronic health record database is capable of obtaining a high performing model for assessment of ischemic stroke risk. Further research is needed to determine whether such a DNN-based IDSS could lead to an improvement in clinical practice.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213007 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 13007&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0213007

DOI: 10.1371/journal.pone.0213007

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0213007