Robust optimization through neuroevolution
Paolo Pagliuca and
Stefano Nolfi
PLOS ONE, 2019, vol. 14, issue 3, 1-27
Abstract:
We propose a method for evolving neural network controllers robust with respect to variations of the environmental conditions (i.e. that can operate effectively in new conditions immediately, without the need to adapt to variations). The method specifies how the fitness of candidate solutions can be evaluated, how the environmental conditions should vary during the course of the evolutionary process, which algorithm can be used, and how the best solution can be identified. The obtained results show how the method proposed is effective and computational tractable. It allows to improve performance on an extended version of the double-pole balancing problem, outperform the best available human-designed controllers on a car racing problem, and generate effective solutions for a swarm robotic problem. The comparison of different algorithms indicates that the CMA-ES and xNES methods, that operate by optimizing a distribution of parameters, represent the best options for the evolution of robust neural network controllers.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213193 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 13193&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0213193
DOI: 10.1371/journal.pone.0213193
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().