Discovering coherency of specific gene expression and optical reflectance properties of barley genotypes differing for resistance reactions against powdery mildew
Matheus Thomas Kuska,
Jan Behmann,
Mahsa Namini,
Erich-Christian Oerke,
Ulrike Steiner and
Anne-Katrin Mahlein
PLOS ONE, 2019, vol. 14, issue 3, 1-20
Abstract:
Hyperspectral imaging has proved its potential for evaluating complex plant-pathogen interactions. However, a closer link of the spectral signatures and genotypic characteristics remains elusive. Here, we show relation between gene expression profiles and specific wavebands from reflectance during three barley—powdery mildew interactions. Significant synergistic effects between the hyperspectral signal and the corresponding gene activities has been shown using the linear discriminant analysis (LDA). Combining the data sets of hyperspectral signatures and gene expression profiles allowed a more precise differentiation of the three investigated barley-Bgh interactions independent from the time after inoculation. This shows significant synergistic effects between the hyperspectral signal and the corresponding gene activities. To analyze this coherency between spectral reflectance and seven different gene expression profiles, relevant wavelength bands and reflectance intensities for each gene were computed using the Relief algorithm. Instancing, xylanase activity was indicated by relevant wavelengths around 710 nm, which are characterized by leaf and cell structures. HvRuBisCO activity underlines relevant wavebands in the green and red range, elucidating the coherency of RuBisCO to the photosynthesis apparatus and in the NIR range due to the influence of RuBisCO on barley leaf cell development. These findings provide the first insights to links between gene expression and spectral reflectance that can be used for an efficient non-invasive phenotyping of plant resistance and enables new insights into plant-pathogen interactions.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213291 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 13291&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0213291
DOI: 10.1371/journal.pone.0213291
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().