Optimal parameter identification of synthetic gene networks using harmony search algorithm
Wei Zhang,
Wenchao Li,
Jianming Zhang and
Ning Wang
PLOS ONE, 2019, vol. 14, issue 3, 1-28
Abstract:
Computational modeling of engineered gene circuits is an important while challenged task in systems biology. In order to describe and predict the response behaviors of genetic circuits using reliable model parameters, this paper applies an optimal experimental design(OED) method to obtain input signals. In order to obtain informative observations, this study focuses on maximizing Fisher information matrix(FIM)-based optimal criteria and to provide optimal inputs. Furthermore, this paper designs a two-stage optimization with the modified E-optimal criteria and applies harmony search(HS)-based OED algorithm to minimize estimation errors. The proposed optimal identification methodology involves estimation errors and the sample size to pursue a trade-off between estimation accuracy and measurement cost in modeling gene networks. The designed cost function takes two major factors into account, in which experimental costs are proportional to the number of time points. Experiments select two types of synthetic genetic networks to validate the effectiveness of the proposed HS-OED approach. Identification outcomes and analysis indicate the proposed HS-OED method outperforms two candidate OED approaches, with reduced computational effort.
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213977 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 13977&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0213977
DOI: 10.1371/journal.pone.0213977
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().