EconPapers    
Economics at your fingertips  
 

Predicting individual-level income from Facebook profiles

Sandra C Matz, Jochen I Menges, David J Stillwell and H Andrew Schwartz

PLOS ONE, 2019, vol. 14, issue 3, 1-13

Abstract: Information about a person’s income can be useful in several business-related contexts, such as personalized advertising or salary negotiations. However, many people consider this information private and are reluctant to share it. In this paper, we show that income is predictable from the digital footprints people leave on Facebook. Applying an established machine learning method to an income-representative sample of 2,623 U.S. Americans, we found that (i) Facebook Likes and Status Updates alone predicted a person’s income with an accuracy of up to r = 0.43, and (ii) Facebook Likes and Status Updates added incremental predictive power above and beyond a range of socio-demographic variables (ΔR2 = 6–16%, with a correlation of up to r = 0.49). Our findings highlight both opportunities for businesses and legitimate privacy concerns that such prediction models pose to individuals and society when applied without individual consent.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0214369 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 14369&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0214369

DOI: 10.1371/journal.pone.0214369

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0214369