Free-view gait recognition
Yonghong Tian,
Lan Wei,
Shijian Lu and
Tiejun Huang
PLOS ONE, 2019, vol. 14, issue 4, 1-24
Abstract:
Human gait has been shown to be an effective biometric measure for person identification at a distance. On the other hand, changes in the view angle pose a major challenge for gait recognition as human gait silhouettes are usually different from different view angles. Traditionally, such a multi-view gait recognition problem can be tackled by View Transformation Model (VTM) which transforms gait features from multiple gallery views to the probe view so as to evaluate the gait similarity. In the real-world environment, however, gait sequences may be captured from an uncontrolled scene and the view angle is often unknown, dynamically changing, or does not belong to any predefined views (thus VTM becomes inapplicable). To address this free-view gait recognition problem, we propose an innovative view-adaptive mapping (VAM) approach. The VAM employs a novel walking trajectory fitting (WTF) to estimate the view angles of a gait sequence, and a joint gait manifold (JGM) to find the optimal manifold between the probe data and relevant gallery data for gait similarity evaluation. Additionally, a RankSVM-based algorithm is developed to supplement the gallery data for subjects whose gallery features are only available in predefined views. Extensive experiments on both indoor and outdoor datasets demonstrate that the VAM outperforms several reference methods remarkably in free-view gait recognition.
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0214389 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 14389&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0214389
DOI: 10.1371/journal.pone.0214389
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().