EconPapers    
Economics at your fingertips  
 

Research on soil moisture prediction model based on deep learning

Yu Cai, Wengang Zheng, Xin Zhang, Lili Zhangzhong and Xuzhang Xue

PLOS ONE, 2019, vol. 14, issue 4, 1-19

Abstract: Soil moisture is one of the main factors in agricultural production and hydrological cycles, and its precise prediction is important for the rational use and management of water resources. However, soil moisture involves complex structural characteristics and meteorological factors, and it is difficult to establish an ideal mathematical model for soil moisture prediction. Existing prediction models have problems such as prediction accuracy, generalization, and multi-feature processing capability, and prediction performance must improve. Based on this, taking the Beijing area as the research object, the deep learning regression network (DNNR) with big data fitting capability was proposed to construct a soil moisture prediction model. By integrating the dataset, analyzing the time series of the predictive variables, and clarifying the relationship between features and predictive variables through the Taylor diagram, selected meteorological parameters can provide effective weights for moisture prediction. Test results prove that the deep learning model is feasible and effective for soil moisture prediction. Its’ good data fitting and generalization capability can enrich the input characteristics while ensuring high accuracy in predicting the trends and values of soil moisture data and provides an effective theoretical basis for water-saving irrigation and drought control.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0214508 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 14508&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0214508

DOI: 10.1371/journal.pone.0214508

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0214508