EconPapers    
Economics at your fingertips  
 

Ex-ante online risk assessment for building emergency evacuation through multimedia data

Haoran Zhang, Xuan Song, Xiaoya Song, Dou Huang, Ning Xu, Ryosuke Shibasaki and Yongtu Liang

PLOS ONE, 2019, vol. 14, issue 4, 1-14

Abstract: Ex-ante online risk assessment for building emergency evacuation is essential to protect human life and property. Current risk assessment methods are limited by the tradeoff between accuracy and efficiency. In this paper, we propose an online method that overcomes this tradeoff based on multimedia data (e.g. videos data from surveillance cameras) and deep learning. The method consists of two parts. The first estimates the evacuee position as input for training the assessment model to then perform risk assessment in real scenarios. The second considers a social force model based on the evacuation simulation for the output of training model. We verify the proposed method in simulation and real scenarios. Model sensitivity analyses and large-scale tests demonstrate the usability and superiority of the proposed method. By the method, the computation time of risk assessment could be decreased from 10 minutes (by traditional simulation method) to 2.18 s.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0215149 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 15149&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0215149

DOI: 10.1371/journal.pone.0215149

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0215149