EconPapers    
Economics at your fingertips  
 

New vertical handover prediction schemes for LTE-WLAN heterogeneous networks

Khalid M Hosny, Marwa M Khashaba, Walid I Khedr and Fathy A Amer

PLOS ONE, 2019, vol. 14, issue 4, 1-31

Abstract: Providing complete mobility along with minimizing the poor quality of service (QoS) is one of the highest essential challenges in mobile wireless networks. Handover prediction can overcome these challenges. In this paper, two novel prediction schemes are proposed. The first, depends on scanning the quality of all signals among mobile station and all nearby stations in the surrounding area, while the second one is based on a multi-criteria prediction decision using both the signal-to-noise ratio SNR value and station’s bandwidth. Moreover, the prediction efficiency is improved by reducing the number of redundant/ unnecessary handovers. The proposed schemes are evaluated using different scenarios with several mobile stations’ numbers, different WLAN access points, LTE-base station number & location, and random mobile station movement manner. The proposed schemes achieved a success rate of 99% with the different scenarios using LTE-WLAN architecture. The performance of the proposed prediction schemes outperformed the performance of the existing prediction schemes in terms of the accuracy percentage.

Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0215334 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 15334&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0215334

DOI: 10.1371/journal.pone.0215334

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0215334