Identification of urban regions’ functions in Chengdu, China, based on vehicle trajectory data
Qingke Gao,
Jianhong Fu,
Yang Yu and
Xuehua Tang
PLOS ONE, 2019, vol. 14, issue 4, 1-17
Abstract:
Data about human trajectories has been widely used to study urban regions that are attractive to researchers and are considered to be hotspots. It is difficult, however, to quantify the function of urban regions based on the varieties of human behavior. In this research, we developed a clustering method to help discover the specific functions that exist within urban regions. This method applies the Gaussian Mixture Model (GMM) to classify regions’ inflow and trip count characteristics. It regroups these urban regions using the Pearson Correlation Coefficient (PCC) clustering method based on those typical characteristics. Using a large amount of vehicle trajectory data (approximately 1,500,000 data points) in the Chinese city of Chengdu, we demonstrate that the method can discriminate between urban functional regions, by comparing the proportion of surface objects within each region. This research shows that vehicle trajectory data in different functional urban regions possesses different time-series curves, while similar types of functional regions can be identified by these curves. Compared with remote sensing images and other statistical methods which can provide only static results, our research can provide a timely and effective approach to determine an urban region’s functions.
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0215656 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 15656&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0215656
DOI: 10.1371/journal.pone.0215656
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().