Penalized logistic regression with low prevalence exposures beyond high dimensional settings
Sam Doerken,
Marta Avalos,
Emmanuel Lagarde and
Martin Schumacher
PLOS ONE, 2019, vol. 14, issue 5, 1-14
Abstract:
Estimating and selecting risk factors with extremely low prevalences of exposure for a binary outcome is a challenge because classical standard techniques, markedly logistic regression, often fail to provide meaningful results in such settings. While penalized regression methods are widely used in high-dimensional settings, we were able to show their usefulness in low-dimensional settings as well. Specifically, we demonstrate that Firth correction, ridge, the lasso and boosting all improve the estimation for low-prevalence risk factors. While the methods themselves are well-established, comparison studies are needed to assess their potential benefits in this context. This is done here using the dataset of a large unmatched case-control study from France (2005-2008) about the relationship between prescription medicines and road traffic accidents and an accompanying simulation study. Results show that the estimation of risk factors with prevalences below 0.1% can be drastically improved by using Firth correction and boosting in particular, especially for ultra-low prevalences. When a moderate number of low prevalence exposures is available, we recommend the use of penalized techniques.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217057 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 17057&type=printable (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0217057
DOI: 10.1371/journal.pone.0217057
Access Statistics for this article
More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().