EconPapers    
Economics at your fingertips  
 

Using Unmanned Aerial Systems (UAS) to assay mangrove estuaries on the Pacific coast of Costa Rica

Adam Yaney-Keller, Pilar Santidrián Tomillo, Jordan M Marshall and Frank V Paladino

PLOS ONE, 2019, vol. 14, issue 6, 1-20

Abstract: Mangrove forests, one of the world’s most endangered ecosystems, are also some of the most difficult to access. This is especially true along the Pacific coast of Costa Rica, where 99% of the country’s mangroves occur. Unmanned Aerial Systems (UAS), or drones, have become a convenient tool for natural area assessment, and offer a solution to the problems of remote mangrove monitoring. This study is the first to use UAS to analyze the structure of a mangrove forests within Central America. Our goals were to (1) determine the forest structure of two estuaries in northwestern Costa Rica through traditional ground measurements, (2) assess the accuracy of UAS measurements of canopy height and percent coverage and (3) determine whether the normalized difference vegetation index (NDVI) could discriminate between the most abundant mangrove species. We flew a UAS equipped with a single NDVI sensor during the peak wet (Sept–Nov) and dry (Jan–Feb) seasons. The structure and species composition of the estuaries showed a possible transition between the wet mangroves of southern Costa Rica and the drier northern mangroves. UAS-derived measurements at 100 cm/pixel resolution of percent canopy coverage and maximum and mean canopy height were not statistically different from ground measurements (p > 0.05). However, there were differences in mean canopy height at 10 cm/pixel resolution (p = 0.043), indicating diminished returns in accuracy as resolution becomes extremely fine. Mean NDVI values of Avicennia germinans (most abundant species) changed significantly between seasons (p

Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217310 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 17310&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0217310

DOI: 10.1371/journal.pone.0217310

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0217310