EconPapers    
Economics at your fingertips  
 

Determination of iris thickness development in children using swept-source anterior-segment optical coherence tomography

Shunsuke Nakakura, Yuki Nagata, Yukiko Shimizu, Akiko Kawai, Hitoshi Tabuchi and Yoshiaki Kiuchi

PLOS ONE, 2019, vol. 14, issue 5, 1-9

Abstract: Purpose: The uvea comprises the iris, ciliary body, and choroid. However, the development of the anterior part (iris and ciliary body) in children is not yet fully elucidated. We investigated the iris thickness (IT) in children using swept-source anterior-segment optical coherence tomography (ASOCT). Methods: In this retrospective, clinic-based study, we enrolled 41 children (mean ± standard deviation: 6.8 ± 3.3 years; range: 3–16; 17 males) with normal or mild refractive error. Horizontal scanning images of swept-source ASOCT were analyzed in temporal and nasal angle areas. The ITs at 1 and 2 mm from the pupil edge were measured using swept-source ASOCT. The association between IT and age, sex, and ocular morphological parameters (i.e., axial length, average corneal curvature, central corneal thickness, inter-scleral spur distance, and anterior chamber depth) was assessed using Pearson’s correlation coefficient (r) and linear regression analysis. Results: The average IT (temporal and nasal) at 1 and 2 mm were 0.432 ± 0.060 (0.302−0.569 mm) and 0.337 ± 0.045 (0.229−0.414 mm), respectively. There was a significant correlation between age and average IT (r = 0.45, P = 0.002 at 1 mm and r = 0.31, P = 0.042 at 2 mm). Multiple linear regression analysis revealed that age (coefficient: 0.01), axial length (−0.02), average corneal curvature (0.01), and anterior chamber depth (0.01) at 1 mm as well as age (0.00), average corneal curvature (0.09), anterior chamber depth (0.06), and male (–0.02) at 2 mm were identified as predictors of IT. Conclusions: IT in children increases with age. Additionally, IT was thinner with longer axial length and in males, thicker in eyes with deeper anterior chamber and flatter corneal curvature. Our study may partly explain the development of eyeball structures in children.

Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217656 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 17656&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0217656

DOI: 10.1371/journal.pone.0217656

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0217656