EconPapers    
Economics at your fingertips  
 

Fast optimization of non-negative matrix tri-factorization

Andrej Čopar, Blaž Zupan and Marinka Zitnik

PLOS ONE, 2019, vol. 14, issue 6, 1-15

Abstract: Non-negative matrix tri-factorization (NMTF) is a popular technique for learning low-dimensional feature representation of relational data. Currently, NMTF learns a representation of a dataset through an optimization procedure that typically uses multiplicative update rules. This procedure has had limited success, and its failure cases have not been well understood. We here perform an empirical study involving six large datasets comparing multiplicative update rules with three alternative optimization methods, including alternating least squares, projected gradients, and coordinate descent. We find that methods based on projected gradients and coordinate descent converge up to twenty-four times faster than multiplicative update rules. Furthermore, alternating least squares method can quickly train NMTF models on sparse datasets but often fails on dense datasets. Coordinate descent-based NMTF converges up to sixteen times faster compared to well-established methods.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217994 (text/html)
https://journals.plos.org/plosone/article/file?id= ... 17994&type=printable (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:plo:pone00:0217994

DOI: 10.1371/journal.pone.0217994

Access Statistics for this article

More articles in PLOS ONE from Public Library of Science
Bibliographic data for series maintained by plosone ().

 
Page updated 2025-03-19
Handle: RePEc:plo:pone00:0217994